
Sci.Int.(Lahore),32(1),145-154,2020 ISSN 1013-5316; CODEN: SINTE 8 145

January-Febryary

COMPARISON AND EVALUATION OF TRADITIONAL AND MODERN
NETWORK DATA PATH PROTOCOLS

Waleed T. Al-Sit
Department of Computer Engineering, Mu'tah University Al-karak , Jodran

w_sitt@hotmail.com

ABSTRACT— Recently, many new network paths were introduced, while old paths are still in use. The trade-offs remain

vague and should be further addressed. Since the last decade, the Internet is playing a major role in persons' lives, and the

demand on the Internet in all fields increased rapidly. To get a fast and secure connection to the Internet, the networks

providing the service should get faster and more reliable. Many network data paths have been proposed to achieve the

previous objectives since the 1970s. It started with the Transmission Control Protocol (TCP) and the User Datagram Protocol

(UDP) and later followed by several more modern paths, including the Quick UDP Internet Connections (QUIC), the Remote

Direct Memory Access (RDMA), and the Data Plane Development Kit (DPDK). The question on which data path should be

adapted and based on which features is occurred. In this work, we will try to answer this question using different perspectives

such as the protocol techniques, latency and congestion control, the achieved throughput, middle boxes consideration, loss

recovery mechanisms, developer productivity, and host resource utilization.

Index Terms— Data path, TCP, UDP, QUIC, RDMA, DPDK.

I. INTRODUCTION

The availability of electronic appliances that store various

types of data, or can hold desired services, lead to the need to

share data or services with other electronic appliances.

Computer networks, for example, facilitate the sharing of

different types between computers, laptops, or any smart

devices that can connect to the system. Computing resources

can also be shared through a network such as printing a

document on a printer that is shared through a network or

uses remote shared storage. Secured sharing is also possible

through networks connecting devices/users with different

privileges. Although devices in different networks are

connected in similar ways, computer networks differ

according to the medium carrying the signals, the

transmission protocols, the size, the topology, and the intent

of the organization.

Since the last decade, the largest known computer network in

the world is the Internet. The Internet plays a vital role,

almost in all aspects of human life. In general, the workload

in network systems has been overwhelmed. Therefore,

network applications exploded in all fields to support the

increasing demands of leveraging the networks. The network

model is divided into seven logical layers to make the

architecture of the network clearer, traceable, and to provide

consistent and reliable services. Each layer performs a

specific functionality.

Our work focuses mainly on the processes of the fourth layer,

which is called the Transport layer, and occasionally we will

explain related procedures from other layers where needed.

The primary function of the transport layer is to ensure

packets are error-free prior transmission and that all of them

arrive and correctly reassembled at the destination [1]. More

specifically, the transport layer allows processes to

communicate, and it controls the process-to-process delivery.

The application data at the transport layer appears in the

forms of segments that are ready for transmission, and all

parts will be reassembled at the destination upon arrival [1].

The protocols functioning in the transport layer were

classified according to the connection into connection-

oriented or connectionless. This protocol starts by

establishing a virtual connection before transferring segments

from the source to the destination and terminates the

connection once all data is transferred. Such protocols

normally use specific mechanisms to control the flow and

possible transmission errors. On the other hand,

connectionless protocols do not establish connections before

sending the data [2], and every single segment is treated as an

independent packet [3, 4, 5]. The transferred data using such

protocols are delivered to the destination process blindly

without any flow or error control mechanisms.

The Transmission Control Protocol (TCP) and the User

Datagram Protocol (UDP) are the best-known examples for

connection-oriented and connectionless protocols. TCP and

UDP are approved to work in the transport layer, although

they handle data transmission differently [6]. TCP uses a

connection-oriented protocol that provides a very reliable

mechanism of handling messaging or information

transmission to guarantee message delivery. If any error

occurred during transmission, the packet would be

automatically re-sent over the network [7]. However, UDP

employs a simpler transport model with a minimum of

protocol technique. Additionally, using UDP, it is possible to

transmit messages indicated as datagrams, voices, and videos

with various internet services such as emails, webpages,

video streaming, etc.

At the hardware side, network appliances based on dedicated

hardware are also essential to the network system has a major

effect on performance and reliability. The main task of the

appliances is to forward and filter packets. Still, they support

many other network functions (NFs), including quality of

service (QoS), deep packet inspection (DPI), data encryption

service, and so on [8]. However, hardware-based network

appliances have some drawbacks. First, hardware-based

network appliances are relatively expensive. The purchasing

and power costs are unaffordable for a huge number of these

appliances. Second, the management of hardware-based

network appliances is somehow difficult as the administrator

must learn different network operating system for the devices

offered by various vendors of the appliances.

Additionally, the types of middleboxes are increasing day-

146 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),32(1),145-154,2020

January-Febryary

after-day, which makes it more difficult for an administrator

to master their new operating systems. Third, the hardware-

based network appliances are space consuming and have poor

flexibility. Finally, their development is slow, and it is years

to catch up with the development of new network

technologies [8].

In 2012, many large carriers proposed the concept of

Network Function Virtualization (NFV) [9], to decouple the

NF from the dedicated hardware appliances. This approach

enabled shifting the NFs to software running on off-the-shelf

servers. However, the move from hardware to software was

not easy to progress. The huge obstacle was the gab in

software performance compared to the hardware

performance. Although Unix-based software routers provide

high flexibility and a low cost, the packet processing was

slow, and the vast delay was unacceptable for the network

system. Therefore, many projects concluded that standard

software is not suitable for highspeed packet forwarding

scenario [9, 10, 11]. However, various research groups

analyzed the bottleneck of network performance by building

models to leverage the available network data paths or

develop better ones. A network data path describes the set of

functional units that perform the packet processing

operations.

 At the Intel side, a high-speed packet processing framework

named Data plane Development Kit (DPDK) [12, 13] that

creates a lower layer to perform all tasks such as allocating

and managing memory for network packets in addition to

buffering the needed packet descriptors and pass them

through the Network Interface Card (NIC). Similarly, the

Remote Dynamic Memory Access technology (RDMA)

technology allows writing/read data from/to known memory

regions of other network machines without involving their

CPUs aiming to achieve high-speed data transfer. The last

protocol involved in this work is the Quick UDP Protocol

(QUIC), which is a Google, proposed encrypted, and

multiplexed transport protocol. QUIC was implemented to

improve HTTPS performance smoothly.

In this work, we try to answer the question of which data path

should be adapted in which application. The trade-offs

between the traditional data paths such as TCP and UDP

compared to more modern data paths such as QUIC, RDMA,

and DPDK, still need to be further studied. The rest of this

work is structured as follows: Section 2 presents the used

terms. Section 3 presents an overview of network data paths.

A thorough comparison between the studied network data

paths is in Section 4, and the conclusion can be found in the

last section.

II. TERMS

A. Flow Control

Flow control is the mechanism that is used to make sure the

sent proportion is within the receiving capabilities of the

receiver. If the received data is higher than the receiver's

capabilities, an overflow problem occurs, causing the part of

the transferred data to be lost and need to be retransmitted

[14].

B. Congestion Control

It occurs if a network node or a link is carrying more data

than it can handle. The congestion problem might cause

packet losses, new connections to be blocked, or merely a

delay in the transmission [15].

C. Error Control

It is the technique used for the detection and correction of

data blocks during the communications. More specifically,

error control is used to checks how strong the characters are

at the bit and packet levels to ensure that the received data is

identical to the transmitted data [16].

D. Latency

Latency measures the time it takes for some data to get to its

destination over the network. It is usually measured as a

round trip time (RTT) - the time taken for information to get

to its destination and back again [17].

E. Multiplexing and Demultiplexing

Multiplexing is the process used to combine and transmit

multiple data streams over a single data channel, although the

data might come from different sources. Additionally,

multiplexing helps network devices to communicate with

other network devices without having to dedicate a specific

connection for each communication. At the destination side,

the multiplexed signal must be separated again using a

process called demultiplexing [18].

F. Network Quality of Service

Quality of Service (QoS) refers to the capability of a network

to provide better service to selected network traffic over

various technologies, including Frame Relay, Ethernet, 802.1

networks, and IP-routed networks that may use any or all

these underlying technologies. The primary goal of QoS is to

provide priority, including dedicated bandwidth, controlled

jitter, and latency, delay, packet loss parameters. Also

important is making sure that providing priority for one or

more flows does not make other streams fail [19].

G. Retransmission

It is a mechanism used by protocols to ensure reliable

transmission where a lost or corrupted signal must be

transmitted again [20].

III. NETWORK DATA PATH

In this section we will present the data paths starting the

traditional ones followed by the most modern ones.

A. The Transmission Control Protocol

The Transmission Control Protocol (TCP) (RFC 0793) is the

most important protocol in the Internet protocol suite and

considered the cornerstone protocol in the transport layer [1].

TCP was initiated during the early network implementation

stages to complement the Internet Protocol (IP). Therefore,

the common name for the suite is TCP/IP.

TCP is a connection-oriented point to point protocol where

the "handshake" is required before one application process

can start sending data to another application. The handshake

process means that applications must exchange some

preliminary segments to establish the parameters of the

Sci.Int.(Lahore),32(1),145-154,2020 ISSN 1013-5316; CODEN: SINTE 8 147

January-Febryary

ensuing data transfer [18]. Therefore, TCP service is

considered reliable, ordered, and error-checked. TCP was

optimized for accurate delivery, not the timely delivery.

Thus,

long delays might occur waiting for out-of-order messages or

retransmissions presumed lost messages. Therefore, TCP is

not the best option for real-time applications such as voice

over IP communications. However, presently the majority of

internet applications, including the World Wide Web

(WWW), file transfers, remote administrations, and emails,

rely on the TCP transmission.

TCP guarantees that the transmitted packets are received to

the destination in the correct order as they were sent. TCP

employs acknowledgments to take care of this matter. When

a packet is received at the destination, a confirmation will be

sent to inform the sender that the packet was received

successfully. If an acknowledgment is not received, the

sender has to retransmit the packets again after a certain time

specified by a specific timer [6]. The retransmission timer is

used to ensure data delivery in the absence of any feedback

from the remote data receiver. The Retransmission timeout

(RTO) is the duration of this time [21].

TCP uses multiple flow and error control mechanisms at the

transport level. Inflow control process, a set of segments

called the window is transmitted all at once, and each

segment is equipped with a sequence number. If the receiver

acknowledges the highest part, it is an indication that all of

the previous layers have arrived successfully. The sender is

informed about the size of the TCP segments window using a

field in the TCP header called the advertised window

(AWND). This particular information would help the slow

receiver not to be overwhelmed by a fast sender. [22]. In the

case of a full buffer, some packets might be dropped.

Therefore, TCP uses a congestion window (CWND) with a

specific size. The sending window is defined as the minimum

of the AWND and CWND [6].

TCP connection starts with a three-way handshake protocol.

First, the client-side sends a special TCP segment (The SYN

segment) to the server-side. The SYN segment contains an

SYN bit that equals one and an initial sequence number that

is generated randomly by the client-side, for example,

SEQ=x. The SYN segment is later encapsulated within an IP

datagram and sent to the server. When the server received the

IP datagram, it extracts the SYN segment and sends another

segment (The SYNACK segment) to the client. The

SYNACK segment contains three types of important; the

SYN bit, which is set to 1, the acknowledgment field of the

TCP segment header that is set to ACK=x+1, and the server

chosen initial sequence number SEQ=y. The actual meaning

of this segment is, "I received your SYN packet to start a

connection with your initial sequence number, x. I agree to

establish this connection. My own initial sequence number is

y". Once the client receives the SYNACK segment, the client

sends another segment to the server with the value y+1 this

time in the acknowledgment field, the value x+1 in the

sequence number field of the TCP segment header, and the

SYN bit is set to zero as the connection is established. Once

these three steps completed, the client and server hosts can

exchange data. [18]. Figure 1 shows the process of three-

ways handshaking in TCP.

B. User Datagram Protocol

User Datagram Protocol (UDP) (RFC 768) is the second

widely used protocol in the transport layer. Similar to the

TCP, it transfers data across the Internet Protocol IP based

network. UDP does not establish a connection between the

sender and the receiver. More specifically, UDP does not

require a formal handshake to get the data flowing and has no

need for SYNs and ACKs flags [23]. Therefore, this protocol

is considered unreliable, as there is no guarantee that all of

the transmitted data would reach the destination. The

messages in UDP are broken into datagrams and sent across

the network. Each packet acts as a separate message, and it is

handled individually. Datagrams can follow any available

path toward the destination, and hence they can be received

in a different order [24]. While these were some of the UDP

bad marks, yet it is widely used in various types of

applications where some data loss is accepted, like the

applications that do not require reliable data stream service as

multimedia [6]. UDP provides multiplexing at a low level

without safe delivery, flow, and congestion control at any

network node identified by an IP address.

Additionally, UDP provides checksums for data integrity and

to check transmission errors. UDP also contains the port

numbers used to address different functions at the source and

destination of the datagram. The UDP protocol is extremely

simplistic, where Data from the application layer is simply

delivered to the transport layer and then encapsulated in a

UDP datagram. This datagram is later sent to the host without

any mechanism to guarantee a safe arrival to the destination

device. If some reliability checking is needed, it is pushed

back to the application layer, which may be adequate in many

cases. For instance, the IP Multimedia System (IMS) of 3G

Figure 1: three-way handshake in TCP: segment exchange.

148 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),32(1),145-154,2020

January-Febryary

wireless networks uses the Real-time Transport Protocol

(RTP) for exchanging media streams, and RTP typically runs

over UDP [25]. UDP-lite (RFC 3828) is a lightweight version

of UDP that delivers packets even if their checksum is

invalid. This protocol is useful for real-time audio/video

encoding applications that can handle single bit errors in the

payload [2].

C. Quick UDP Protocol

QUIC is an encrypted, multiplexed, low latency transport

protocol that was proposed and implemented by Google in

2012 on top of the UDP and is standardized by the Internet

Engineering Task Force (IETF) working group [26]. The

UDP is unreliable, and it provides no congestion control.

However, this was considered in the QUIC design, which

implements congestion control at the application layer [27].

Figure 2 illustrates the difference in the TCP and QUIC

mechanisms. QUIC was mainly introduced to improve the

HTTPS performance smoothly as is requires no changes to

the operating systems [28]. Additionally, QUIC is considered

a multiplexed protocol as it multiplexes the streams of

different applications in one single connection using a

lightweight data structuring abstraction. Along the same side,

QUIC, which has UDP as a substrate, is an encrypted

transport protocol where packets are authenticated and

encrypted. In more detail, QUIC applies a secured

cryptographic handshake where known server credentials on

repeat connections and redundant handshake at multiple

layers are not required any more [29]. Accordingly,

handshake latency is limited.

QUIC was proposed by Google to reduce the webpage

retrieval time [27]. Therefore, QUIC was deployed in google

Chrome [30]. Where the server-side was deployed at

Google's servers. At the client-side, QUIC was deployed in

three main services; Chrome, YouTube, and the Android

Google search app. Improvements were detected at all of the

three areas of application where latency was reduced in

Google search responses, and the rebuffering time was also

minimized in YouTube applications for desktop and mobile

users, as presented in Table 1.

Based on such achievements, QUIC accounts now in more

than 30% of the total google traffic, which maps to at least

7% of the global internet traffic [31].

Table 1: percentage of reduced latency in google search

responses and YouTube application rebuffering after deploying

QUIC. (Data from [29].

Google search responses
Desktop users 8%

Mobile users 3.8%

YouTube playback re-buffer rate
Desktop users 18%

Mobile users 15.3%

Recently, intermediary devices (Middleboxes) such as

firewalls and Network Address Translators (NATs) became

vital control points of the Internet's architecture [32].

However, as QUIC implementations incorporate a UDP core,

it is not prone to the availability of Middleboxes.

Middleboxes might exist along the end-to-end path with a

potential effect on the connection-oriented protocols such as

TCP, which is not the case with connectionless protocols

such as UDP [33]. More specifically, Middleboxes might

inspect and modify TCP packet headers. On the other hand,

applications that use UDP for communications such as the

Domain Name System (DNS) do operate through

Middleboxes without employing any additional mechanism.

In client-server models, HTTP/1.1 recommends limiting the

single client connections to a server [34], and HTTP/2

recommends using only one single TCP connection between

the client and the server [35]. However, it is hard to control

the TCP communications framing [36], which consistently

causes an additional latency, and such a change might need to

modify the webservers, client operating systems, and the

mechanisms of the middleboxes to deploy the transport

modifications. Additionally, developers and vendors of

operating systems and Middleboxes should cooperate. On the

contrary, using QUIC built on top of UDP encrypts the

transport headers requiring no further change from vendors,

developers, or even network operators [29].

QUIC is designed to facilitate a 0-Round Trip Time (RTT)

setup of connections using the Diffie-Hellman (DH)

exchange. The client initially sends an inchoate message to

the server to get a rejection message before the handshake.

This rejection message has all server config connection keys

required for DH exchanges, such as the server DH public

value. Once all server DH keys are available, the client sends

the complete message

containing its public DH value. If the client aims for a 0-

RTT, then it must not wait for the server to reply to send the

data encrypted with its keys. In other words, if the client has

already talked to the server before, the startup latency is 0-

RTT, even with encrypted connections [29]. Upon a

successful handshake and exchange of the temporary public

DH values, the forward-secure keys are calculated at the

client and the server, which are directly used to encrypt the

exchanged packets. If the server ever changes the config, it

replies with the standard rejection message, and the

handshake process can start again.

Another issue that QUIC is designed to eliminate the Head-

of-Line (HOL) Blocking. The TCP transport is prone to HOL

blocking [37] due to sequential delivery resulting from

applications multiplexing data in the single-byte stream of

TCP's abstraction. However, QUIC multiplies many QUIC

streams within the single UDP connection, where many

responses or requests can be handled at the same UDP socket

[27].

Loss recovery was also handled in QUIC, where the TCP

"retransmission ambiguity" problem [38] [39] is fully

Figure 2: Traditional Quick and TCP stack.

Sci.Int.(Lahore),32(1),145-154,2020 ISSN 1013-5316; CODEN: SINTE 8 149

January-Febryary

addressed and avoided. The loss of retransmitted segments

can be detected via expensive timeouts. However, in QUIC

packets have new packet numbers, including the

retransmitted data packets, and thus it is not required to

distinguish the retransmission from the original transmission.

QUIC was recently intensively studied, and many recent

advances were suggested, such as the Multipath QUIC

(MPQUIC), which incorporates a scheduler in order to

increase the QUIC throughput and reduce downloading time

on the Internet with no required OS changes. In the end, it is

noticed that QUIC did not adopt one specific algorithm in all

deployments, but it was never reported that QUIC ever

generated any harmful traffic to network stability [27].

D. Remote Dynamic Memory Access Technology

 The demand on CPU to control the transport of messages

The demand for CPU to control the transport of messages

through networks has always been a key point that needs

further addressing. Many kinds of research have concentrated

on minimizing the CPU overhead during packet exchange

between network machines. This case was mostly handled by

the Remote Dynamic Memory Access technology (RDMA)

in which machines are allowed to write/read from/to known

memory regions of other network machines without

involving their CPUs. With a latency not exceeding (3μs) and

zero CPU overhead, RDMA can handle network data

exchange [40]. Therefore, in client-server models, the client

is allowed to access the server memory to place a service

request without involving the server. Besides low latency and

low CPU

Overhead, RDMA provides high message rates, which is

extremely important to many modern applications that store

small objects [41]. The remote memory accesses are

accomplished using only the remote Network Interface Card

(NIC).

Additionally, Bypassing the kernel in the remote host helped

 presenting the RDMA as one of the top available low latency

data exchange technologies. RDMA is not widespread as it

was long supported by the switch fabric InfiniBand network,

which has been expensive with no Ethernet compatibility

[42]. However, many resent RDMA advances, such as RoCE

[42] [43], are able to work over the Ethernet with data center

bridging [44] [45] with reasonable prices. The main

difference between the classic Ethernet networks and the

RDMA based is the ability of the RDMA NICs to bypass the

kernel in all communications and performing hardware-based

retransmissions of lost packets [46]. Based on this, the

expected latency in RDMA networks is around (1μs), where

it is in the classic Ethernet networks around (10μs).

Therefore, RDMA is widely used in data centers, especially

after the hardware became much cheaper [40].

The availability of the fast networks deploying RDMA

technology increased dramatically due to the noticeable drop

in their prices. Their prices are now comparable to the costs

of the Ethernet [46]. Additionally, the abundance of cheap

and large-sized Dynamic Random Access Memories

(DRAMs) played a crucial role in spreading the RDMA

technology [47]. DRAMs can be used as stores sometime

such as Redis [48] or cashes such as Memcached [49].

Internally, they do use many different types of data structures

to provide the required memory accesses in the fastest ways.

RDMA uses both transport types; Connected and

unconnected. The connected transport methods require a pre-

defined connection between the two communicating NICs.

Such links might be considered reliable or unreliable based

on packet reception acknowledgments. Unreliable

connections generate no confirmations, which results in less

traffic compared to secure connections. Along the other side,

RDMA transport through the unconnected method is

implemented through the unreliable datagram, which can

perform better only in the one-to-many topologies [46].

In either connection method, RDMA uses seven primary

transfer operations (verbs). A Send operation for the standard

message transfer to a remote buffer. If the message has a

Steering tag (Stag) field, then the remote buffer identified by

this Stag will become inaccessible until it receives an enable

message. This operation is called send with invalidating. The

send with Solicited event is a little different where the remote

recipient will generate a specific function when it receives the

message. A simple combination is allowed where a message

can be invalidating and can carry an event to the remote

recipient with the operation Send with Solicited Event and

Invalidate. To transfer data, the write operation named

RDMA Write is used.

Similarly, to read from a remote buffer, the operation Remote

Direct Memory Access Read can be used. The final

procedure named Terminate is used to inform the remote

recipient about an error that occurred at the sender using a

terminate message [50]. Figure 3 a sample RDMA

communication.

Employing RDMA in datacenters presented a challenge

where RDMA uses a hop by hop flow control and an end to

end congestion control [51]. Although congestion control is

expected to affect not more than 0.1% of the datacenters

employing RDMA [52], multiple flows might collide at a

switch causing long latency tails [53] even with good

network designs [54]. Many recent projects searched for

points that might suffer more in data centers employing the

RDMA, and some stated that it occurs only at network edges

[52] and suggested using modifications such as Blitz to avoid

the p

Blitz uses a divide-and specialize method where the receiver

congestion is isolated, which is claimed to speed-up the

convergence. Recently, many researchers targeted RDMA

technology, which resulted in significant improvements. At

the early stages, RDMA could only function in the form of

one-sided as any knowledge about the remote process is not

needed [40], while the recent advances presented that two-

sided RDMA is now possible [55]. Additionally, many new

platforms were presented to improve the RDMA

performance, such as FaRM, which added two mechanisms to

enable efficient use of the single machine transaction in

RDMA [42]. Along the same side, HERD [46] is a system

that was designed to make the best use of the RDMA

networks trying to reduce the RTT using efficient RDMA

primitives.

roblem.

150 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),32(1),145-154,2020

January-Febryary

Figure 3: Steps involved in posting verbs. The dotted arrows are

PCIe PIO operations. The solid, straight, green arrows are

DMA operations: the thin ones are for writing the completion

events. The thick solid, straight, black arrows are RDMA data

packets and the thin ones are ACKs.

E. Data plane Development Kit

As the number of machines connected to the Internet is

increasing day after day, data traffic became an overhead, and

more and more CPU cycles are required [56].

 Recently, many projects addressed such problems using

software solutions instead of relying only on dedicated

hardware. Moreover, many researchers suggest that the

performance of hardware and software routers is comparable

[57]. Therefore, the problems of standard packet processing

software need to be all identified at early stages, especially

the issue of achieving the 1Gbit/s and 10 Gbit/s network

adapters line rate [58]. Many research projects focused

initially on creating test models and use different available

cases to address these limitations [57] [59]. The results

confirmed that the standard software would not be able to

reach the maximum performance for small packets.

Therefore, many recent projects focused on developing high-

speed packet processing frameworks using available and

affordable hardware [60] [61] [62]. One last issue that needs

to be handled is the network stack, which provides a

complete implementation of TCP and UDP protocols in

Linux, for example. Full details can be found in [63]. The

current form of the network stack is causing multiple

problems in memory allocation, which makes achieving the

maximum performance almost impossible [58]. The open

question remaining, is the current form of network stack

suitable or does it need to be extended or even replaced?

At the Intel side, researchers in 2012 presented the Dataplane

Development Kit (DPDK) which is a framework that has a

set of libraries and drivers that form a lower layer with the

required functionalities to process packets in high speed in

various data plane applications on intel’s architectures [64]

[65]. This layer is called the Environment Abstraction Layer

(EAL). It can perform all needed tasks such as allocating and

managing memory for network packets in addition to

buffering the needed packet descriptors in ring-like structures

then pass them through the NIC to the destination application

(and vice versa) [56].

In more details, the packet processing is completely done at

the user-space, which requires Huge-pages for storage. The

DPDK supports 32-bit and 64-bit intel possessors from Atom

to Xeon generations with or without non-uniform memory

access (NUMA) regardless of the number of cores or

processors available.

DPDK runs on the Linux operating system with full

replacement to the network stack. It is implementing the so-

called "run-to-completions" model where all resources must

be allocated before the data plane applications running on the

processor cores. Congestion control is not widely questioned

in DPDK, while scheduling is not supported, as all devices

must be accessed via polling [58]. Additionally, work can be

done in stages as cores can exchange messages.

DPDK LIBRARIES

To make packet processing faster, DPDK provides various

libraries that were optimized for high performance. These

libraries are executed in user space and perform all necessary

tasks similar to the Linux network stack, such as buffering

packet descriptors, allocating memory for packets, and

passing the packets to the application (and vice versa)

through the NIC. In simple words, the libraries manage the

memory, queues, and the buffers.

1. Queue Management

The provided library manages any type of queues by

delivering a ring structure with a fixed size with doubly

linked list implementation following the FIFO principle with

en-queue and de-queue standard functionalities [13].

Although the lockless application ensures a faster writing

process [66], the size of the structure is fixed and not

resizable during the runtime.

2. Memory Management

The mapping to the physical memory is handled by the EAL

[12], where every object and structure is granted a specific

portion of the physical memory. For maximum performance,

suitable padding is added between objects to ensure that they

are equally loaded [12]. The only concern is that multiple

cores might be needed to access the ring, which might result

in a bottleneck unless each core has a separate local cash

memory [58]

3. Buffer Management

DPDK has a designed library to transport network packets.

This library provides the needed buffers which are created

before any application's runtime. During the runtime, the user

must be able to pick and use any available buffer and must

free it after wise. The size of the buffers is normally small,

but in case larger packets are transferred, multiple sets of

them are chained as it has pointers to another one. Uses a

library that provides the ability to allocate and free buffers

used by DPDK applications to store message buffers. It

reduces the time the operating system spends in allocating

and deallocating buffers. DPDK pre-allocates fixed-size

buffers.

The DPDK has many other side libraries performing different

tasks like the Longest Prefix Matching (LPM) library, which

Sci.Int.(Lahore),32(1),145-154,2020 ISSN 1013-5316; CODEN: SINTE 8 151

January-Febryary

helps to implement a table for an algorithm to forward

packets based on the IPv4 address [67]. Additionally, DPDK

also has a hash library that is used for fast lookups of a

specific unique key in a big set of entries [12].

DPDK Operation

Once the EAL is created, the DPDk provides all libraries as

the EAL must have access to all low-level resources such as

the hardware and the memory to create the needed interfaces

[65]. At this stage, all applications can be launched and

loaded, all memory space processes can be accomplished, and

all high-speed packet-processing functionalities are ready.

However, DPDK provides no features to handle the firewalls

or TCP/UDP as in the standard Linux network stack and

relays of the programmers to build them.

Recently, many research groups have focused on enhancing

the DPDK functionalities, and many new versions are

offered, such as the DPDK v Switch [68], HPS Router [8],

and Open Function [69].

IV. THOROUGH COMPARISON AND EVALUATION

In this section, we present a detailed comparison between the

studied data paths according to the techniques, latency and

congestion control, the achieved throughput, middle boxes

consideration, loss recovery mechanisms, developer

productivity, and host resource utilization.

A. Techniques

The packet transfer process is accomplished using different

methods in different data paths. TCP, for example, is a

connection-oriented point to point protocol where a process

can start sending data to another after a "handshake" where a

set of preliminary segments are exchanges to establish the

parameters of the ensuing data transfer [18]. TCP ensures that

all sent packets are received and in the correct order and thus

considered a reliable technique.

However, UDP is considered a connectionless and unreliable

protocol as it does not require a formal handshake to initiate

the data flow. Although UDP provides a basic data

multiplexing, another protocol using the unreliable

techniques is the QUIC which is a multiplexed encrypted

protocol implemented by Google on top of the unreliable

UDP to improve the performance of the HTTPS without any

change to the operating system. The encryption and

decryption are accomplished through a kind of cryptographic

handshake where known server credentials on repeat

connections are used. On the other side, different mechanisms

are applied in the RDMA and DPDK. Using RDMA

machines are allowed to write/read from/to known memory

regions of other network machines without involving their

CPUs. In DPDK, a set of libraries and drivers form a lower

layer with the needed functionalities to process packets at

high speed in data plane applications on intel’s architectures.

B. Latency and Congestion Control

Latencies and losses frequently occur because of network

congestions, and thus packet drops are induced. Usually, the

congestion control uses "Congestion Window" to determine

the number of bytes a network can handle. However, the size

of this has no standard [70].

The TCP protocol standards remain unaware of the

unexpected effects that happened at network resources on the

Internet, including the appearance of congestion collapse

[71]. In a more detailed description, TCP requires 1 RTT for

the handshake and 1 or 2 in case of encrypted

communication. At the same time, other protocols like QUIC

would need at most 1 RTT for first-time communication and

0 RTT in case there was a communication previously

between this host and server [27]. The reason behind this

difference is that QUIC deploys intensive multiplexing,

where streams of different applications are multiplexed in one

single connection using a lightweight data structuring

abstraction. RDMA presents another high-speed

communication where eliminating kernel/user context

switches, and it provides low latency, not exceeding (3μs)

and zero CPU overhead [40]. Besides, RDMA provides many

congestion control mechanisms [19]. DPDK had a different

way of dealing with latency, where developers using DPDK

in applications proved that it could reduce the latency up to 2

times compared to other available technologies [72].

However, the user of UDP knows that it implements no

congestion control [27].

C. Head of Line Blocking

It is a common problem in computer networks where the line

of packets is held up by the first packet for various reasons.

In TCP, it is frequently caused by out-of-order packet

delivery [27]. For example, HTTP/2 still suffers from HOL

using TCP, where one lost packet in the TCP stream makes

all streams wait until that package is retransmitted and

received. However, in UDP, if one packet is lost, it doesn't

stop the data from getting delivered as UDP doesn't force the

order. So, there is no HOL in UDP neither in the QUIC

protocol implemented on top of it. In RDMA, it was a

different case wherein early stages HOL did not get much

attention as it is considered really rare to occur, but modern

RDMA frameworks such as DCQCN [73] pointed to this

problem and solved through introducing an end-to-end

congestion control scheme.

D. Throughput

A network throughput refers to the amount of data moved

successfully from one place to another in a given time period.

It normally depends on the congestion window or the buffer

size estimated by the congestion controller at the sender's side

and the receiving window at the receiver. At TCP, the

efficiency is the most important factor to tune the parameters,

and it is noticed that default parameters of TCP are

designed to sacrifice throughput, in exchange for an efficient

sharing of bandwidth on congested networks [74]. Regarding

the buffer size, various techniques tried to determine the

optimal size to achieve the best performance [75]. It is

reported that in TCP to make the best throughput, the buffer

size should be dynamically adjusted to the connection and

server characteristics through dynamic right-sizing [76] and

buffer size allocation [77]. On the other hand, the UDP

measured throughput is better than TCP under the same

conditions. The reason behind this is that UDP does not

require acknowledgments, but the downside is that sometimes

small fragments can be lost [74]. In the modern data paths

such as QUIC, an advertised connection flow limit is

specified by 15 MB [29], which is considered large enough to

avoid flow control bottlenecks. Compared to TCP, for

example, in video transfer, QUIC increased the number of

videos that can be played at their optimal rates by 20.9%

[29]. The highest throughput to be achieved is using the

152 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),32(1),145-154,2020

January-Febryary

RDMA were offloading the networking stack, and

eliminating kernel/user context switches resulted in low

latency and high throughput. In Datacenters, servers would

achieve the highest throughput using RDMA [46]. In DPDK's

early stages, the performance was not on the top of the

pyramid as the bottleneck was the CPU with a limited

number of cycles per second [58]. However, as the door is

open to developers to help to improve the performance, many

new implementations focused on increasing the throughput

up to 13x times [78].

E. Middleboxes

Middleboxes are network appliances that are capable of

manipulating, filtering, inspecting, or transforming the traffic,

which might affect the packet forwarding. The way to deal

with middleboxes differentiates old and new data paths. TCP

and UDP are long working protocols even before most of the

currently available middleboxes. Therefore, middleboxes are

not affecting the standard TCP, or UDP traffics. TCP, for

example, remains a trusted backup for new data paths so that

if their transmission is blocked through a middlebox, the

transfer is switched to TCP to ensure successful

communication [29]. QUICK packets were all blocked by

most middleboxes in the early stages. Later, a vast range of

middleboxes was identified, and the vendors were reached

out, and presently QUIC traffic is treated reasonably in most

middleboxes [29]. In RDMA, the middleboxes are

overlooked as datacenters usually don't have middleboxes

[79]. However, DPDK went further and created unique

versions that are applicable for middleboxes such as

OpenFunction [69].

F. Loss Recovery and Retransmission Ambiguity

In TCP, the "retransmission ambiguity" problem was raised

as frequently the receiver could not figure whether the

received acknowledgment was for an original transmission

(presumed lost) or for a retransmission. The loss of a

retransmitted segment in TCP is commonly detected via an

expensive timeout [29]. However, each QUIC packet carries

a unique packet number, including those taking retransmitted

data. Therefore, no further mechanisms are needed to

distinguish a retransmission from an original transmission,

thus avoiding TCP's retransmission ambiguity problem. Other

technologies such as RDMA use lossless link-level flow

control, namely, credit-based flow control and Priority Flow

Control, where packets are almost never lost even with

unreliable transports. However, Hardware failures might lead

to losing some packets, which are extremely rare [46]. DPDK

also had its own techniques where the dropout rate was

studied in detail in terms of packet size, hash tables, and the

packet buffering memory (membool). It was found the small

packet sizes, complex hash tables, and extremely small or

extremely large membools are associated with more dropped

packets [80]. On the other hand, UDP employs no loss

recovery techniques.

G. Developer productivity

Data paths provide the developers with multiple

developments or testing tools to safely use the data path. For

example, in serverless communications, the Lambda model

[81] can be used by developers to check responses to events

such as in Remote Procedure Calls (RPC), mostly based on

TCP connections. On the browsing side, SIP APIs help the

developers manage, test and analyze the TCP/UDP transport

resulted from browsing. Similarly, Silverlight and Flash

player are excellent developer tools, but it is noticed that TCP

is preferred over UDP therein [82]. However, QUIC testing

and analysis are provided through the developer tools of the

Chrome browser, which helps to measure the time elapsed

since requesting a web page until the page is fully loaded. In

RDMA and DPDK, it was more flexible where recent RDMA

frameworks are customizable, and developers can assign

algorithms and even design the storage structure as in

Derecho [83]. Similarly, the DPDK frameworks allow the

developers to write their network protocol stacks and

implement a set of high-performance datagrams forwarding

routines in the user space [8].

H. Host resource utilization

In TCP/UDP, a defined memory should be reserved at both

communication sides, and the used data structure must be

shared across the different CPU threads/processes, especially

in multi-core CPU architectures [84]. The same applies to

ports, where an allocated port for the communication will be

allocated for the whole conversation. Similarly, the QUIC

implementation was initially written with a focus on rapid

feature development and ease of debugging, not the CPU

efficiency. Even after applying several new mechanisms to

reduce the CPU cost, QUIC remained more costly than TCP

[29]. However, RDMA reduces CPU load, as it bypasses the

kernel and the TCP/IP stack and avoids data copy between

the user space and the kernel [43]. However, it still needs

special access to the destination memory. At the DPDK side,

the bottleneck is the CPU. A CPU can only operate a limited

number of cycles per second. The more complex the

processing of a packet is, the more CPU-cycles are

consumed, which then cannot be used for other packets. This

limits the number of packets processed per second.

Therefore, in order to achieve higher throughput, the goal

must be to reduce the per-packet CPU-cycles [58].

V. CONCLUSION

Improvements to the traditional protocols are possible but not

urgently required. QUIC, which was built on top of UDP,

outperformed UDP in many aspects. Compared to TCP, the

RDMA throughput is higher, the QUIC is faster and better for

transferring videos in their optimal rate, and DPDK works

better in Intel architectures. However, the long-term

supported protocols TCP and UDP are part of many standard

communications and applications, and probably they will

persistently play a key role in future data transmissions. This

work showed it is useful to direct the protocol used to some

specific areas where they fit the best. RDMA provides in the

communication of data centers, QUIC would help developers

in multi-disciplines due to the available routines connecting

with the application layer, and DPDK would work correctly

in appliances with Intel architecture.

VI. REFERENCES
[1] M. A. H. Inam Ullah Khan, "Transport Layer Protocols

And Services," International Journal of Research in

Computer and Communication Technology, pp. 2320-5156,

2016.

Sci.Int.(Lahore),32(1),145-154,2020 ISSN 1013-5316; CODEN: SINTE 8 153

January-Febryary

[2] J. H. Mehrnoush Rahmani, "A comparative study of

network transport protocols for in-vehicle media

streaming," IEEE International Conference on Multimedia

and Expo, pp. 441-444, 2008.

[3] D. W. Tanenbaum Andrew, "Computer networks, fourth

edition," Prentice hall, 2003.

[4] B. F. Zafar Saima, "A survey of transport layer protocols

for wireless sensor networks," International Journal of

Computer Applications, 2011.

[5] S. William, "Business data communications," Prentice Hall

PTR, 1990.

[6] A. K. Purnya Awasthi, "Comparative Study and Simulation

of TCP and UDP Traffic over Hybrid Network with Mobile

IP," International Journal of Computer Applications, 2013.

[7] G. Bhargavi, "Experimental Based Performance Testing of

Different TCP Protocol Variants in comparison of RCP+

over Hybrid Network Scenario," International Journal of

Innovations & Advancement in Computer Science IJIACS

ISSN, pp. 2347-8616, 2014.

[8] Zongyao Li, "HPSRouter: A high performance software

router based on DPDK," in 2018 20th International

Conference, 2018.

[9] Rizzo Luigi, "Netmap: a novel framework for fast packet

I/O," 21st USENIX Security Symposium (USENIX Security

12), pp. 101-112, 2012.

[10] M. C. M. B. Wenji Wu, "The performance analysis of

Linux networking–packet receiving," Computer

Communications, pp. 1044-1057, 2007.

[11] R. B. Raffaele Bolla, "Linux software router: Data plane

optimization and performance evaluation," Journal of

Networks, pp. 6-17, 2007.

[12] I. DPDK, "Data Plane Development Kit Project,"

http://www.dpdk.org, 2014.

[13] I. DPDK, "Programmers Guide," 2014. [Online].

[14] N. T. Solutions, "ATM Traffic Management White paper

last accessed," [Online]. [Accessed 3 January 2019].

[15] H. Al-Bahadili, "Simulation in computer network design

and modeling: Use and analysis," Hershey, PA: IGI Globa,

p. 282, 2012.

[16] H. M. M. E. Z. S. G. Liu Hang, "Error control schemes for

networks: An overview," Mobile networks and

Applications, pp. 167-182.

[17] X. Zuo, M. Wang, T. Xiao and X. Wang, "Low-Latency

Networking: Architecture, Techniques, and Opportunities,"

IEEE Internet Computing 22, 2018.

[18] James Kurose, Computer Networking A top down

approach, 2013.

[19] KL Dias, JAS Monteiro, D Florissi , "Traffic Management

in Isochronets Networks," Managing QoS in Multimedia

Networks and Services, pp. 131-146, 2000.

[20] W. Richard, "TCP slow start, congestion avoidance, fast

retransmit, and fast recovery algorithms.," Network

Working Group, Request for Comments: 2001, 1997.

[21] S. Vern Paxson, "Computing TCP's retransmission timer,"

RFC 6298, 2011.

[22] P. Rajashree, "Selective-TCP for wired/wireless networks,"

School of Computing Science-Simon Fraser University,

2006.

[23] M. Rasheed, NM Norwawi, O Ghazali,"Detection

algorithm for internet worms scanning that used user

datagram protocol," International Journal of Information

and Computer Security, pp. 17-32, 2019.

[24] A. Bonczkowski Joshua, "Computer implemented system

and method and computer program product for testing a

software component by simulating a computing component

using captured network packet information," U.S. Patent

9,916,225, 2018.

[25] S. Addagatla, B Goddanakoppalu, "System and method of

network congestion control by UDP source throttling," U.S.

Patent Application 10/758,854, 2005.

[26] "IETF QUIC working group.," [Online].

[27] G Carlucci, L De Cicco, S Mascolo, "HTTP over UDP: an

Experimental Investigation of QUIC," Proceedings of the

30th Annual ACM Symposium on Applied Computing, pp.

609-614, 2015.

[28] S. Tobias Viernickel, "Multipath quic: A deployable

multipath transport protocol," IEEE International

Conference on Communications, pp. 1-7, 2018.

[29] ARAWAVAVCKDZFYF, B. Adam Langley, "The QUIC

transport protocol: Design and Internet-scale deployment,"

Proceedings of the Conference of the ACM Special Interest

Group on Data Communication, pp. 183-196, 2017.

[30] "QUIC, a multiplexed stream transport over UDP,"

[Online].

[31] Sandvine, "Global Internet Phenomena Report - Latin

America and North America," 2016.

[32] U. Shan Huang, "Middleboxes in the Internet: a HTTP

perspective," Network Traffic Measurement and Analysis

Conference (TMA), pp. 1-9, 2017.

[33] S. Eggert, "UDP usage guidelines," RFC 8085, 2017.

[34] J. R. Fielding Roy, "RFC 7230: Hypertext Transfer

Protocol (HTTP/1.1): Message Syntax and Routing,"

Internet Engineering Task Force (IETF), 2014.

[35] R. P. a. M. T. Belshe Mike, "RFC 7540: Hypertext Transfer

Protocol Version 2 (HTTP/2)," Internet Engineering Task

Force (IETF), 2015.

[36] D. L. T. Clark David D., "Architectural considerations for a

new generation of protocols," ACM SIGCOMM Computer

Communication Review, pp. 200-208, 1990.

[37] S. K. Scharf Michael, "Head-of-line Blocking in TCP and

SCTP: Analysis and Measurements," GLOBECOM, pp. 1-5,

2006.

[38] C. P. Karn Phil, "Improving round-trip time estimates in

reliable transport protocols," ACM SIGCOMM Computer

Communication Review, pp. 2-7, 1987.

[39] Z. Lixia, "Why TCP timers don't work well," ACM

SIGCOMM Computer Communication Review, pp. 397-

405, 1986.

[40] L. Mitchell Christopher, "Using One-Sided RDMA Reads

to Build a Fast, CPU-Efficient Key-Value Store," USENIX

Annual Technical Conference, pp. 103-114, 2013.

[41] P. Atikoglu Berk, "Workload analysis of a large-scale key-

value store," ACM SIGMETRICS Performance Evaluation

Review, pp. 53-64, 2012.

[42] H. Dragojević Aleksandar, "FaRM: Fast remote memory,"

{USENIX} Symposium on Networked Systems Design and

Implementation ({NSDI} 14), pp. 401-414, 2014.

[43] B. Shpiner Alexander, "Roce rocks without pfc: Detailed

evaluation," Proceedings of the Workshop on Kernel-

Bypass Networks, pp. 25-30, 2017.

[44] IEEE, "802.1Qau - Congestion Notification," 2010.

[Online].

[45] IEEE, "802.1Qbb - Priority-based Flow Control," 2011.

[Online].

https://scholar.google.com/citations?user=NxjqSSAAAAAJ&hl=ar&oi=sra
https://scholar.google.com/citations?user=YHNwJc4AAAAJ&hl=ar&oi=sra
https://scholar.google.com/citations?user=q2EFrO8AAAAJ&hl=ar&oi=sra

154 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),32(1),145-154,2020

January-Febryary

[46] A. Kalia Anuj, "Using RDMA efficiently for key-value

services," ACM SIGCOMM Computer Communication

Review, pp. 295-306, 2015.

[47] C. Dragojevic Aleksandar, "RDMA Reads: To Use or Not

to Use?," IEEE Data Eng. Bull, pp. 3-14, 2017.

[48] "Redis: An Advanced Key-Value Store," [Online].

[49] "memcached: A Distributed Memory Object Caching

System," 2011. [Online].

[50] G. Recio Renato, "A Remote Direct Memory Access

Protocol Specification," RFC 5040, 2007.

[51] S. Gran Ernst Gunnar, "First experiences with congestion

control in InfiniBand hardware," arallel & Distributed

Processing (IPDPS), 2010 IEEE International Symposium ,

pp. 1-12, 2010.

[52] T. Xue Jaichen, "Fast Congestion Control in RDMA-based

Datacenter Networks," Proceedings of the ACM SIGCOMM

2018 Conference on Posters and Demos, pp. 24-26, 2018.

[53] S. Alizadeh Mohammad, "Data center tcp (dctcp)," ACM

SIGCOMM computer communication review, pp. 63-74,

2011.

[54] L. Charles, "Fat-trees: universal networks for hardware-

efficient supercomputing," IEEE transactions on

Computers 100, pp. 892-901, 1985.

[55] A. Kalia, "FaSST: Fast, Scalable and Simple Distributed

Transactions with Two-Sided (RDMA) Datagram RPCs,"

OSDI, pp. 185-201, 2016.

[56] S. A. R. P. P. A. N. P. Hrishikesh Kulkarni, "A survey on

TCP/IP API stacks based on DPDK," Internation Journal

Of Advance Research And Innovative Ideas In Education ,

2017.

[57] R. Dobrescu Mihai, "RouteBricks: Exploiting Parallelism

To Scale Software Routers," Proceedings of the ACM

SIGOPS 22nd symposium on Operating systems principles,

pp. 15-28, 2009.

[58] S. Dominik, "A look at Intel’s dataplane development kit,"

Network, 2014.

[59] R. B. Bolla Raffaele, "Linux software router: Data plane

optimization and performance evaluation," Journal of

Networks, pp. 6-17, 2007.

[60] M. Han Sangjin, "PacketShader: a GPU-accelerated

software router," ACM SIGCOMM Computer

Communication Review, pp. 195-206, 2011.

[61] L. D. Fusco Francesco, " High speed network traffic

analysis with commodity multi-core systems," Proceedings

of the 10th ACM SIGCOMM conference on Internet

measurement, pp. 218-224, 2010.

[62] P. Bonelli Nicola, "On multi–gigabit packet capturing with

multi–core commodity hardware," International

Conference on Passive and Active Network Measurement,

pp. 64-73, 2012.

[63] L. Rio Miguel, " A map of the networking code in Linux

kernel 2.4. 20," Technical Report DataTAG-2004–1, 2004.

[64] I. DPDK, "Packet Processing on Intel Architecture,

Presentation slides," 2012. [Online].

[65] I. DPDK, "Getting Started Guide," 2014. [Online].

[66] l. A. l. ring-buffer, "http://lwn.net/Articles/340400/," 2014.

[67] B. Christian, "Understanding Linux network internals,"

O'Reilly Media, Inc, 2006.

[68] I. O. S. T. C. P. Processing, " https://01.org/packet-

processing," 2014. [Online].

[69] Z. Tian Chen, "OpenFunction: Data Plane Abstraction for

Software-Defined Middleboxes," arXiv preprint

arXiv:1603.05353, 2016.

[70] E. H. T. A. Badach, "echnik der IP-Netze -TCP/IP incl.

IPv6," Funktionsweise, Protokolle und Dienste.

[71] K. Afanasyev Alexander, "Host-to-host congestion control

for TCP," IEEE Communications surveys & tutorials, pp.

304-342, 2010.

[72] H. Mao Chen-Nien, "Minimizing latency of real-time

container cloud for software radio access networks," Cloud

Computing Technology and Science (CloudCom), 2015

IEEE 7th International Conference, pp. 611-616, 2015.

[73] Z. Zhu Yibo, "Congestion control for large-scale RDMA

deployments," ACM SIGCOMM Computer Communication

Review, pp. 523-536, 2015.

[74] K. Giannoulis S., "TCP vs. UDP Performance Evaluation

for CBR Traffic On Wireless Multihop Networks,"

Simulation 14, 2009.

[75] T. Brian, "TCP Tuning Guide for Distributed Applications

on Wide Area Networks," Usenix & SAGE Login, pp. 33-

39, 2001.

[76] F. Weigle Eric, "Dynamic right-sizing: A simulation study,"

Computer Communications and Networks, 2001.

Proceedings. Tenth International Conference, pp. 152-158,

2001.

[77] R. C. Cohen Amit, "A dynamic approach for efficient TCP

buffer allocation," IEEE Transactions on Computers, pp.

303-312, 2002.

[78] V. DeCandia Giuseppe, "Scalable Key/Value Search in

Datacenters," ACM SIGOPS operating systems review, pp.

205-220, 2007.

[79] R. Gandhi, "improving cloud middlebox infrastructure

Online Services," Purdue University, Theses and

Dissertations, 2016.

[80] L. Xiaoban Wu, "Network Measurement for 100Gbps Links

Using Multicore Processors," The 3rd Innovating the

Network for Data-Intensive Science, pp. 1-10, 2016.

[81] D. Hendrickson Scott, "Serverless computation with

openlambda," Elastic, p. 80.

[82] W. Davids Carol, "SIP APIs for voice and video

communications on the web," Proceedings of the 5th

International conference on principles, systems and

applications of IP telecommunications, 2011.

[83] R. Birman Ken, "Groups, Subgroups and Auto-Sharding in

Derecho: A Customizable RDMA Framework for Highly

Available Cloud Services," NSDI ‘17, 2016.

[84] A. K. P. Woo Shinae, "Scalable TCP session monitoring

with symmetric receive-side scaling," KAIST, Daejeon,

Korea, Tech. Rep, 2012.

