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ABSTRACT— Recently, many new network paths were introduced, while old paths are still in use. The trade-offs remain 

vague and should be further addressed. Since the last decade, the Internet is playing a major role in persons' lives, and the 

demand on the Internet in all fields increased rapidly. To get a fast and secure connection to the Internet, the networks 

providing the service should get faster and more reliable. Many network data paths have been proposed to achieve the 

previous objectives since the 1970s. It started with the Transmission Control Protocol (TCP) and the User Datagram Protocol 

(UDP) and later followed by several more modern paths, including the Quick UDP Internet Connections (QUIC), the Remote 

Direct Memory Access (RDMA), and the Data Plane Development Kit (DPDK). The question on which data path should be 

adapted and based on which features is occurred. In this work, we will try to answer this question using different perspectives 

such as the protocol techniques, latency and congestion control, the achieved throughput, middle boxes consideration, loss 

recovery mechanisms, developer productivity, and host resource utilization. 

Index Terms— Data path, TCP, UDP, QUIC, RDMA, DPDK. 

 

I. INTRODUCTION 

The availability of electronic appliances that store various 

types of data, or can hold desired services,  lead to the need to 

share data or services with other electronic appliances. 

Computer networks, for example, facilitate the sharing of 

different types between computers, laptops, or any smart 

devices that can connect to the system. Computing resources 

can also be shared through a network such as printing a 

document on a printer that is shared through a network or 

uses remote shared storage. Secured sharing is also possible 

through networks connecting devices/users with different 

privileges. Although devices in different networks are 

connected in similar ways, computer networks differ 

according to the medium carrying the signals, the 

transmission protocols, the size, the topology, and the intent 

of the organization.  

Since the last decade, the largest known computer network in 

the world is the Internet. The Internet plays a vital role, 

almost in all aspects of human life. In general, the workload 

in network systems has been overwhelmed. Therefore, 

network applications exploded in all fields to support the 

increasing demands of leveraging the networks. The network 

model is divided into seven logical layers to make the 

architecture of the network clearer, traceable, and to provide 

consistent and reliable services. Each layer performs a 

specific functionality. 

Our work focuses mainly on the processes of the fourth layer, 

which is called the Transport layer, and occasionally we will 

explain related procedures from other layers where needed. 

The primary function of the transport layer is to ensure 

packets are error-free prior transmission and that all of them 

arrive and correctly reassembled at the destination [1]. More 

specifically, the transport layer allows processes to 

communicate, and it controls the process-to-process delivery. 

The application data at the transport layer appears in the 

forms of segments that are ready for transmission, and all 

parts will be reassembled at the destination upon arrival [1]. 

The protocols functioning in the transport layer were 

classified according to the connection into connection-

oriented or connectionless. This protocol starts by 

establishing a virtual connection before transferring segments 

from the source to the destination and terminates the 

connection once all data is transferred. Such protocols 

normally use specific mechanisms to control the flow and 

possible transmission errors. On the other hand, 

connectionless protocols do not establish connections before 

sending the data [2], and every single segment is treated as an 

independent packet [3, 4, 5]. The transferred data using such 

protocols are delivered to the destination process blindly 

without any flow or error control mechanisms. 

The Transmission Control Protocol (TCP) and the User 

Datagram Protocol (UDP) are the best-known examples for 

connection-oriented and connectionless protocols. TCP and 

UDP are approved to work in the transport layer, although 

they handle data transmission differently [6]. TCP uses a 

connection-oriented protocol that provides a very reliable 

mechanism of handling messaging or information 

transmission to guarantee message delivery. If any error 

occurred during transmission, the packet would be 

automatically re-sent over the network [7]. However, UDP 

employs a simpler transport model with a minimum of 

protocol technique. Additionally, using UDP, it is possible to 

transmit messages indicated as datagrams, voices, and videos 

with various internet services such as emails, webpages, 

video streaming, etc.  

At the hardware side, network appliances based on dedicated 

hardware are also essential to the network system has a major 

effect on performance and reliability. The main task of the 

appliances is to forward and filter packets. Still, they support 

many other network functions (NFs), including quality of 

service (QoS), deep packet inspection (DPI), data encryption 

service, and so on [8]. However, hardware-based network 

appliances have some drawbacks. First, hardware-based 

network appliances are relatively expensive. The purchasing 

and power costs are unaffordable for a huge number of these 

appliances. Second, the management of hardware-based 

network appliances is somehow difficult as the administrator 

must learn different network operating system for the devices 

offered by various vendors of the appliances. 

Additionally, the types of middleboxes are increasing day-
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after-day, which makes it more difficult for an administrator 

to master their new operating systems. Third, the hardware-

based network appliances are space consuming and have poor 

flexibility. Finally, their development is slow, and it is years 

to catch up with the development of new network 

technologies [8]. 

In 2012, many large carriers proposed the concept of 

Network Function Virtualization (NFV) [9], to decouple the 

NF from the dedicated hardware appliances. This approach 

enabled shifting the NFs to software running on off-the-shelf 

servers.  However, the move from hardware to software was 

not easy to progress. The huge obstacle was the gab in 

software performance compared to the hardware 

performance. Although Unix-based software routers provide 

high flexibility and a low cost, the packet processing was 

slow, and the vast delay was unacceptable for the network 

system. Therefore, many projects concluded that standard 

software is not suitable for highspeed packet forwarding 

scenario [9, 10, 11]. However, various research groups 

analyzed the bottleneck of network performance by building 

models to leverage the available network data paths or 

develop better ones. A network data path describes the set of 

functional units that perform the packet processing 

operations. 

 At the Intel side,  a high-speed packet processing framework 

named Data plane Development Kit (DPDK)  [12, 13] that 

creates a lower layer to perform all tasks such as allocating 

and managing memory for network packets in addition to 

buffering the needed packet descriptors and pass them 

through the Network Interface Card (NIC). Similarly, the 

Remote Dynamic Memory Access technology (RDMA) 

technology allows writing/read data from/to known memory 

regions of other network machines without involving their 

CPUs aiming to achieve high-speed data transfer. The last 

protocol involved in this work is the Quick UDP Protocol 

(QUIC), which is a Google, proposed encrypted, and 

multiplexed transport protocol. QUIC was implemented to 

improve HTTPS performance smoothly. 

In this work, we try to answer the question of which data path 

should be adapted in which application. The trade-offs 

between the traditional data paths such as TCP and UDP 

compared to more modern data paths such as QUIC, RDMA, 

and DPDK, still need to be further studied. The rest of this 

work is structured as follows: Section 2 presents the used 

terms. Section 3 presents an overview of network data paths. 

A thorough comparison between the studied network data 

paths is in Section 4, and the conclusion can be found in the 

last section. 

II. TERMS 

A.  Flow Control 

Flow control is the mechanism that is used to make sure the 

sent proportion is within the receiving capabilities of the 

receiver. If the received data is higher than the receiver's 

capabilities, an overflow problem occurs, causing the part of 

the transferred data to be lost and need to be retransmitted 

[14]. 

B.  Congestion Control 

It occurs if a network node or a link is carrying more data 

than it can handle. The congestion problem might cause 

packet losses, new connections to be blocked, or merely a 

delay in the transmission [15]. 

C.  Error Control 

It is the technique used for the detection and correction of 

data blocks during the communications. More specifically, 

error control is used to checks how strong the characters are 

at the bit and packet levels to ensure that the received data is 

identical to the transmitted data [16]. 

D.  Latency 

Latency measures the time it takes for some data to get to its 

destination over the network.  It is usually measured as a 

round trip time (RTT) - the time taken for information to get 

to its destination and back again [17]. 

E.  Multiplexing and Demultiplexing 

Multiplexing is the process used to combine and transmit 

multiple data streams over a single data channel, although the 

data might come from different sources. Additionally, 

multiplexing helps network devices to communicate with 

other network devices without having to dedicate a specific 

connection for each communication. At the destination side, 

the multiplexed signal must be separated again using a 

process called demultiplexing [18]. 

F.  Network Quality of Service 

Quality of Service (QoS) refers to the capability of a network 

to provide better service to selected network traffic over 

various technologies, including Frame Relay, Ethernet, 802.1 

networks, and IP-routed networks that may use any or all 

these underlying technologies. The primary goal of QoS is to 

provide priority, including dedicated bandwidth, controlled 

jitter, and latency, delay, packet loss parameters. Also 

important is making sure that providing priority for one or 

more flows does not make other streams fail [19]. 

G. Retransmission 

It is a mechanism used by protocols to ensure reliable 

transmission where a lost or corrupted signal must be 

transmitted again [20]. 

III. NETWORK DATA PATH 

In this section we will present the data paths starting the 

traditional ones followed by the most modern ones. 

A. The Transmission Control Protocol 

The Transmission Control Protocol (TCP) (RFC 0793) is the 

most important protocol in the Internet protocol suite and 

considered the cornerstone protocol in the transport layer [1]. 

TCP was initiated during the early network implementation 

stages to complement the Internet Protocol (IP). Therefore, 

the common name for the suite is TCP/IP. 

TCP is a connection-oriented point to point protocol where 

the "handshake" is required before one application process 

can start sending data to another application. The handshake 

process means that applications must exchange some 

preliminary segments to establish the parameters of the  
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ensuing data transfer [18]. Therefore, TCP service is 

considered reliable, ordered, and error-checked. TCP was 

optimized for accurate delivery, not the timely delivery. 

Thus,  

long delays might occur waiting for out-of-order messages or 

retransmissions presumed lost messages. Therefore, TCP is 

not the best option for real-time applications such as voice 

over IP communications. However, presently the majority of 

internet applications, including the World Wide Web 

(WWW), file transfers, remote administrations, and emails, 

rely on the TCP transmission.  

TCP guarantees that the transmitted packets are received to 

the destination in the correct order as they were sent. TCP 

employs acknowledgments to take care of this matter. When 

a packet is received at the destination, a confirmation will be 

sent to inform the sender that the packet was received 

successfully. If an acknowledgment is not received, the 

sender has to retransmit the packets again after a certain time 

specified by a specific timer [6]. The retransmission timer is 

used to ensure data delivery in the absence of any feedback 

from the remote data receiver. The Retransmission timeout 

(RTO) is the duration of this time [21]. 

TCP uses multiple flow and error control mechanisms at the 

transport level. Inflow control process, a set of segments 

called the window is transmitted all at once, and each 

segment is equipped with a sequence number. If the receiver 

acknowledges the highest part, it is an indication that all of 

the previous layers have arrived successfully. The sender is 

informed about the size of the TCP segments window using a 

field in the TCP header called the advertised window 

(AWND). This particular information would help the slow 

receiver not to be overwhelmed by a fast sender. [22]. In the 

case of a full buffer, some packets might be dropped. 

Therefore, TCP uses a congestion window (CWND) with a 

specific size. The sending window is defined as the minimum 

of the AWND and CWND [6]. 

TCP connection starts with a three-way handshake protocol. 

First, the client-side sends a special TCP segment (The SYN 

segment) to the server-side. The SYN segment contains an 

SYN bit that equals one and an initial sequence number that 

is generated randomly by the client-side, for example, 

SEQ=x. The SYN segment is later encapsulated within an IP 

datagram and sent to the server. When the server received the 

IP datagram, it extracts the SYN segment and sends another 

segment (The SYNACK segment) to the client. The 

SYNACK segment contains three types of important; the 

SYN bit, which is set to 1, the acknowledgment field of the 

TCP segment header that is set to ACK=x+1, and the server 

chosen initial sequence number SEQ=y. The actual meaning 

of this segment is, "I received your SYN packet to start a 

connection with your initial sequence number, x. I agree to 

establish this connection. My own initial sequence number is 

y". Once the client receives the SYNACK segment, the client 

sends another segment to the server with the value y+1 this 

time in the acknowledgment field, the value x+1 in the 

sequence number field of the TCP segment header, and the 

SYN bit is set to zero as the connection is established. Once 

these three steps completed, the client and server hosts can 

exchange data. [18]. Figure 1 shows the process of three-

ways handshaking in TCP. 

B. User Datagram Protocol 

User Datagram Protocol (UDP) (RFC 768) is the second 

widely used protocol in the transport layer. Similar to the 

TCP, it transfers data across the Internet Protocol IP based 

network. UDP does not establish a connection between the 

sender and the receiver. More specifically, UDP does not 

require a formal handshake to get the data flowing and has no 

need for SYNs and ACKs flags [23]. Therefore, this protocol 

is considered unreliable, as there is no guarantee that all of 

the transmitted data would reach the destination. The 

messages in UDP are broken into datagrams and sent across 

the network. Each packet acts as a separate message, and it is 

handled individually. Datagrams can follow any available 

path toward the destination, and hence they can be received 

in a different order [24]. While these were some of the UDP 

bad marks, yet it is widely used in various types of 

applications where some data loss is accepted, like the 

applications that do not require reliable data stream service as 

multimedia [6]. UDP provides multiplexing at a low level 

without safe delivery, flow, and congestion control at any 

network node identified by an IP address. 

Additionally, UDP provides checksums for data integrity and 

to check transmission errors. UDP also contains the port 

numbers used to address different functions at the source and 

destination of the datagram. The UDP protocol is extremely 

simplistic, where Data from the application layer is simply 

delivered to the transport layer and then encapsulated in a 

UDP datagram. This datagram is later sent to the host without 

any mechanism to guarantee a safe arrival to the destination 

device. If some reliability checking is needed, it is pushed 

back to the application layer, which may be adequate in many 

cases. For instance, the IP Multimedia System (IMS) of 3G 

Figure 1: three-way handshake in TCP: segment exchange. 
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wireless networks uses the Real-time Transport Protocol 

(RTP) for exchanging media streams, and RTP typically runs 

over UDP [25]. UDP-lite (RFC 3828) is a lightweight version 

of UDP that delivers packets even if their checksum is 

invalid. This protocol is useful for real-time audio/video 

encoding applications that can handle single bit errors in the 

payload [2]. 

C. Quick UDP Protocol 

QUIC is an encrypted, multiplexed, low latency transport 

protocol that was proposed and implemented by Google in 

2012 on top of the UDP and is standardized by the Internet 

Engineering Task Force (IETF) working group [26]. The 

UDP is unreliable, and it provides no congestion control. 

However, this was considered in the QUIC design, which 

implements congestion control at the application layer [27]. 

Figure 2 illustrates the difference in the TCP and QUIC 

mechanisms. QUIC was mainly introduced to improve the 

HTTPS performance smoothly as is requires no changes to 

the operating systems [28]. Additionally, QUIC is considered 

a multiplexed protocol as it multiplexes the streams of 

different applications in one single connection using a 

lightweight data structuring abstraction. Along the same side, 

QUIC, which has UDP as a substrate, is an encrypted 

transport protocol where packets are authenticated and 

encrypted. In more detail, QUIC applies a secured 

cryptographic handshake where known server credentials on 

repeat connections and redundant handshake at multiple 

layers are not required any more [29]. Accordingly, 

handshake latency is limited.  

QUIC was proposed by Google to reduce the webpage 

retrieval time [27]. Therefore, QUIC was deployed in google 

Chrome [30]. Where the server-side was deployed at 

Google's servers. At the client-side, QUIC was deployed in 

three main services; Chrome, YouTube, and the Android 

Google search app. Improvements were detected at all of the 

three areas of application where latency was reduced in 

Google search responses, and the rebuffering time was also 

minimized in YouTube applications for desktop and mobile 

users, as presented in Table 1.  

Based on such achievements, QUIC accounts now in more 

than 30% of the total google traffic, which maps to at least 

7% of the global internet traffic [31]. 

 
Table 1: percentage of reduced latency in google search 

responses and YouTube application rebuffering after deploying 

QUIC. (Data from [29]. 

Google search responses 
Desktop users 8% 

Mobile users 3.8% 

YouTube playback re-buffer rate 
Desktop users 18% 

Mobile users 15.3% 

 

Recently, intermediary devices (Middleboxes) such as 

firewalls and Network Address Translators (NATs) became 

vital control points of the Internet's architecture [32]. 

However, as QUIC implementations incorporate a UDP core, 

it is not prone to the availability of Middleboxes. 

Middleboxes might exist along the end-to-end path with a 

potential effect on the connection-oriented protocols such as 

TCP, which is not the case with connectionless protocols 

such as UDP [33]. More specifically, Middleboxes might 

inspect and modify TCP packet headers. On the other hand, 

applications that use UDP for communications such as the 

Domain Name System (DNS) do operate through 

Middleboxes without employing any additional mechanism.  

In client-server models, HTTP/1.1 recommends limiting the 

single client connections to a server [34], and HTTP/2 

recommends using only one single TCP connection between 

the client and the server [35]. However, it is hard to control 

the TCP communications framing [36], which consistently 

causes an additional latency, and such a change might need to 

modify the webservers, client operating systems, and the 

mechanisms of the middleboxes to deploy the transport 

modifications. Additionally, developers and vendors of 

operating systems and Middleboxes should cooperate. On the 

contrary, using QUIC built on top of UDP encrypts the 

transport headers requiring no further change from vendors, 

developers, or even network operators [29]. 

QUIC is designed to facilitate a 0-Round Trip Time (RTT) 

setup of connections using the Diffie-Hellman (DH) 

exchange. The client initially sends an inchoate message to 

the server to get a rejection message before the handshake. 

This rejection message has all server config connection keys 

required for DH exchanges, such as the server DH public 

value. Once all server DH keys are available, the client sends 

the complete message  

 

containing its public DH value. If the client aims for a 0-

RTT, then it must not wait for the server to reply to send the 

data encrypted with its keys. In other words, if the client has 

already talked to the server before, the startup latency is 0-

RTT, even with encrypted connections [29]. Upon a 

successful handshake and exchange of the temporary public 

DH values, the forward-secure keys are calculated at the 

client and the server, which are directly used to encrypt the 

exchanged packets. If the server ever changes the config, it 

replies with the standard rejection message, and the 

handshake process can start again.  

Another issue that QUIC is designed to eliminate the Head-

of-Line (HOL) Blocking. The TCP transport is prone to HOL 

blocking [37] due to sequential delivery resulting from 

applications multiplexing data in the single-byte stream of 

TCP's abstraction. However, QUIC multiplies many QUIC 

streams within the single UDP connection, where many 

responses or requests can be handled at the same UDP socket 

[27].  

Loss recovery was also handled in QUIC, where the TCP 

"retransmission ambiguity" problem [38] [39] is fully 

Figure 2: Traditional Quick and TCP stack. 
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addressed and avoided. The loss of retransmitted segments 

can be detected via expensive timeouts. However, in QUIC 

packets have new packet numbers, including the 

retransmitted data packets, and thus it is not required to 

distinguish the retransmission from the original transmission.  

QUIC was recently intensively studied, and many recent 

advances were suggested, such as the Multipath QUIC 

(MPQUIC), which incorporates a scheduler in order to 

increase the QUIC throughput and reduce downloading time 

on the Internet with no required OS changes. In the end, it is 

noticed that QUIC did not adopt one specific algorithm in all 

deployments, but it was never reported that QUIC ever 

generated any harmful traffic to network stability [27]. 

D. Remote Dynamic Memory Access Technology 

 The demand on CPU to control the transport of messages 

The demand for CPU to control the transport of messages 

through networks has always been a key point that needs 

further addressing. Many kinds of research have concentrated 

on minimizing the CPU overhead during packet exchange 

between network machines. This case was mostly handled by 

the Remote Dynamic Memory Access technology (RDMA) 

in which machines are allowed to write/read from/to known 

memory regions of other network machines without 

involving their CPUs. With a latency not exceeding (3μs) and 

zero CPU overhead, RDMA can handle network data 

exchange [40]. Therefore, in client-server models, the client 

is allowed to access the server memory to place a service 

request without involving the server. Besides low latency and 

low CPU  

Overhead, RDMA provides high message rates, which is 

extremely important to many modern applications that store 

small objects [41]. The remote memory accesses are 

accomplished using only the remote Network Interface Card 

(NIC).  

Additionally, Bypassing the kernel in the remote host helped 

 presenting the RDMA as one of the top available low latency 

data exchange technologies. RDMA is not widespread as it 

was long supported by the switch fabric InfiniBand network, 

which has been expensive with no Ethernet compatibility 

[42]. However, many resent RDMA advances, such as RoCE 

[42] [43], are able to work over the Ethernet with data center 

bridging [44] [45] with reasonable prices. The main 

difference between the classic Ethernet networks and the 

RDMA based is the ability of the RDMA NICs to bypass the 

kernel in all communications and performing hardware-based 

retransmissions of lost packets  [46]. Based on this, the 

expected latency in RDMA networks is around (1μs), where 

it is in the classic Ethernet networks around (10μs). 

Therefore, RDMA is widely used in data centers, especially 

after the hardware became much cheaper [40].  

The availability of the fast networks deploying RDMA 

technology increased dramatically due to the noticeable drop 

in their prices. Their prices are now comparable to the costs 

of the Ethernet [46]. Additionally, the abundance of cheap 

and large-sized Dynamic Random Access Memories 

(DRAMs) played a crucial role in spreading the RDMA 

technology [47]. DRAMs can be used as stores sometime 

such as Redis [48] or cashes such as Memcached [49]. 

Internally, they do use many different types of data structures 

to provide the required memory accesses in the fastest ways. 

RDMA uses both transport types; Connected and 

unconnected. The connected transport methods require a pre-

defined connection between the two communicating NICs. 

Such links might be considered reliable or unreliable based 

on packet reception acknowledgments. Unreliable 

connections generate no confirmations, which results in less 

traffic compared to secure connections. Along the other side, 

RDMA transport through the unconnected method is 

implemented through the unreliable datagram, which can 

perform better only in the one-to-many topologies [46].  

In either connection method, RDMA uses seven primary 

transfer operations (verbs). A Send operation for the standard 

message transfer to a remote buffer. If the message has a 

Steering tag (Stag) field, then the remote buffer identified by 

this Stag will become inaccessible until it receives an enable 

message. This operation is called send with invalidating. The 

send with Solicited event is a little different where the remote 

recipient will generate a specific function when it receives the 

message. A simple combination is allowed where a message 

can be invalidating and can carry an event to the remote 

recipient with the operation Send with Solicited Event and 

Invalidate. To transfer data, the write operation named 

RDMA Write is used. 

Similarly, to read from a remote buffer, the operation Remote 

Direct Memory Access Read can be used. The final 

procedure named Terminate is used to inform the remote 

recipient about an error that occurred at the sender using a 

terminate message [50]. Figure 3 a sample RDMA 

communication. 

Employing RDMA in datacenters presented a challenge 

where RDMA uses a hop by hop flow control and an end to 

end congestion control [51]. Although congestion control is 

expected to affect not more than 0.1% of the datacenters 

employing RDMA [52], multiple flows might collide at a 

switch causing long latency tails [53] even with good 

network designs [54]. Many recent projects searched for 

points that might suffer more in data centers employing the 

RDMA, and some stated that it occurs only at network edges 

[52] and suggested using modifications such as Blitz to avoid 

the p  

Blitz uses a divide-and specialize method where the receiver 

congestion is isolated, which is claimed to speed-up the 

convergence. Recently, many researchers targeted RDMA 

technology, which resulted in significant improvements. At 

the early stages, RDMA could only function in the form of 

one-sided as any knowledge about the remote process is not 

needed [40], while the recent advances presented that two-

sided RDMA is now possible [55]. Additionally, many new 

platforms were presented to improve the RDMA 

performance, such as FaRM, which added two mechanisms to 

enable efficient use of the single machine transaction in 

RDMA [42]. Along the same side, HERD [46] is a system 

that was designed to make the best use of the RDMA 

networks trying to reduce the RTT using efficient RDMA 

primitives. 

roblem. 
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Figure 3: Steps involved in posting verbs. The dotted arrows are 

PCIe PIO operations. The solid, straight, green arrows are 

DMA operations: the thin ones are for writing the completion 

events. The thick solid, straight, black arrows are RDMA data 

packets and the thin ones are ACKs. 

E. Data plane Development Kit 

As the number of machines connected to the Internet is 

increasing day after day, data traffic became an overhead, and 

more and more CPU cycles are required [56]. 

 Recently, many projects addressed such problems using 

software solutions instead of relying only on dedicated 

hardware. Moreover, many researchers suggest that the 

performance of hardware and software routers is comparable 

[57]. Therefore, the problems of standard packet processing 

software need to be all identified at early stages, especially 

the issue of achieving the 1Gbit/s and 10 Gbit/s network 

adapters line rate [58]. Many research projects focused 

initially on creating test models and use different available 

cases to address these limitations [57] [59]. The results 

confirmed that the standard software would not be able to 

reach the maximum performance for small packets. 

Therefore, many recent projects focused on developing high-

speed packet processing frameworks using available and 

affordable hardware [60] [61] [62]. One last issue that needs 

to be handled is the network stack, which provides a 

complete implementation of TCP and UDP protocols in 

Linux, for example. Full details can be found in [63].  The 

current form of the network stack is causing multiple 

problems in memory allocation, which makes achieving the 

maximum performance almost impossible [58]. The open 

question remaining, is the current form of network stack 

suitable or does it need to be extended or even replaced?  

At the Intel side, researchers in 2012 presented the Dataplane 

Development Kit (DPDK) which is a framework that has a 

set of libraries and drivers that form a lower layer with the 

required functionalities to process packets in high speed in 

various data plane applications on intel’s architectures [64] 

[65]. This layer is called the Environment Abstraction Layer 

(EAL). It can perform all needed tasks such as allocating and 

managing memory for network packets in addition to 

buffering the needed packet descriptors in ring-like structures 

then pass them through the NIC to the destination application 

(and vice versa) [56].  

In more details, the packet processing is completely done at 

the user-space, which requires Huge-pages for storage. The 

DPDK supports 32-bit and 64-bit intel possessors from Atom 

to Xeon generations with or without non-uniform memory 

access (NUMA) regardless of the number of cores or 

processors available.  

DPDK runs on the Linux operating system with full 

replacement to the network stack. It is implementing the so-

called "run-to-completions" model where all resources must 

be allocated before the data plane applications running on the 

processor cores. Congestion control is not widely questioned 

in DPDK, while scheduling is not supported, as all devices 

must be accessed via polling [58]. Additionally, work can be 

done in stages as cores can exchange messages.  

DPDK LIBRARIES 

To make packet processing faster, DPDK provides various 

libraries that were optimized for high performance. These 

libraries are executed in user space and perform all necessary 

tasks similar to the Linux network stack, such as buffering 

packet descriptors, allocating memory for packets, and 

passing the packets to the application (and vice versa) 

through the NIC. In simple words, the libraries manage the 

memory, queues, and the buffers. 

1. Queue Management 

The provided library manages any type of queues by 

delivering a ring structure with a fixed size with doubly 

linked list implementation following the FIFO principle with 

en-queue and de-queue standard functionalities [13]. 

Although the lockless application ensures a faster writing 

process [66], the size of the structure is fixed and not 

resizable during the runtime. 

2. Memory Management  

The mapping to the physical memory is handled by the EAL 

[12], where every object and structure is granted a specific 

portion of the physical memory. For maximum performance, 

suitable padding is added between objects to ensure that they 

are equally loaded [12]. The only concern is that multiple 

cores might be needed to access the ring, which might result 

in a bottleneck unless each core has a separate local cash 

memory [58] 

3. Buffer Management 

DPDK has a designed library to transport network packets. 

This library provides the needed buffers which are created 

before any application's runtime. During the runtime, the user 

must be able to pick and use any available buffer and must 

free it after wise. The size of the buffers is normally small, 

but in case larger packets are transferred, multiple sets of 

them are chained as it has pointers to another one. Uses a 

library that provides the ability to allocate and free buffers 

used by DPDK applications to store message buffers. It 

reduces the time the operating system spends in allocating 

and deallocating buffers. DPDK pre-allocates fixed-size 

buffers.  

The DPDK has many other side libraries performing different 

tasks like the Longest Prefix Matching (LPM) library, which 
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helps to implement a table for an algorithm to forward 

packets based on the IPv4 address [67]. Additionally, DPDK 

also has a hash library that is used for fast lookups of a 

specific unique key in a big set of entries [12]. 

DPDK Operation 

Once the EAL is created, the DPDk provides all libraries as 

the EAL must have access to all low-level resources such as 

the hardware and the memory to create the needed interfaces 

[65]. At this stage, all applications can be launched and 

loaded, all memory space processes can be accomplished, and 

all high-speed packet-processing functionalities are ready. 

However, DPDK provides no features to handle the firewalls 

or TCP/UDP as in the standard Linux network stack and 

relays of the programmers to build them. 

Recently, many research groups have focused on enhancing 

the DPDK functionalities, and many new versions are 

offered, such as the DPDK v Switch [68], HPS Router [8], 

and Open Function [69]. 

IV. THOROUGH COMPARISON AND EVALUATION 

In this section, we present a detailed comparison between the 

studied data paths according to the techniques, latency and 

congestion control, the achieved throughput, middle boxes 

consideration, loss recovery mechanisms, developer 

productivity, and host resource utilization. 

A.  Techniques 

The packet transfer process is accomplished using different 

methods in different data paths. TCP, for example, is a 

connection-oriented point to point protocol where a process 

can start sending data to another after a "handshake" where a 

set of preliminary segments are exchanges to establish the 

parameters of the ensuing data transfer [18]. TCP ensures that 

all sent packets are received and in the correct order and thus 

considered a reliable technique. 

However, UDP is considered a connectionless and unreliable 

protocol as it does not require a formal handshake to initiate 

the data flow. Although UDP provides a basic data 

multiplexing, another protocol using the unreliable 

techniques is the QUIC which is a multiplexed encrypted 

protocol implemented by Google on top of the unreliable 

UDP to improve the performance of the HTTPS without any 

change to the operating system. The encryption and 

decryption are accomplished through a kind of cryptographic 

handshake where known server credentials on repeat 

connections are used. On the other side, different mechanisms 

are applied in the RDMA and DPDK. Using RDMA 

machines are allowed to write/read from/to known memory 

regions of other network machines without involving their 

CPUs. In DPDK, a set of libraries and drivers form a lower 

layer with the needed functionalities to process packets at 

high speed in data plane applications on intel’s architectures. 

B. Latency and Congestion Control 

Latencies and losses frequently occur because of network 

congestions, and thus packet drops are induced. Usually, the 

congestion control uses "Congestion Window" to determine 

the number of bytes a network can handle. However, the size 

of this has no standard [70]. 

The TCP protocol standards remain unaware of the 

unexpected effects that happened at network resources on the 

Internet, including the appearance of congestion collapse 

[71]. In a more detailed description, TCP requires 1 RTT for 

the handshake and 1 or 2 in case of encrypted 

communication. At the same time, other protocols like QUIC 

would need at most 1 RTT for first-time communication and 

0 RTT in case there was a communication previously 

between this host and server [27]. The reason behind this 

difference is that QUIC deploys intensive multiplexing, 

where streams of different applications are multiplexed in one 

single connection using a lightweight data structuring 

abstraction. RDMA presents another high-speed 

communication where eliminating kernel/user context 

switches, and it provides low latency, not exceeding (3μs) 

and zero CPU overhead [40]. Besides, RDMA provides many 

congestion control mechanisms [19]. DPDK had a different 

way of dealing with latency, where developers using DPDK 

in applications proved that it could reduce the latency up to 2 

times compared to other available technologies [72]. 

However, the user of UDP knows that it implements no 

congestion control [27]. 

C. Head of Line Blocking 

It is a common problem in computer networks where the line 

of packets is held up by the first packet for various reasons. 

In TCP, it is frequently caused by out-of-order packet 

delivery [27]. For example, HTTP/2 still suffers from HOL 

using TCP, where one lost packet in the TCP stream makes 

all streams wait until that package is retransmitted and 

received. However, in UDP, if one packet is lost, it doesn't 

stop the data from getting delivered as UDP doesn't force the 

order. So, there is no HOL in UDP neither in the QUIC 

protocol implemented on top of it. In RDMA, it was a 

different case wherein early stages HOL did not get much 

attention as it is considered really rare to occur, but modern 

RDMA frameworks such as DCQCN [73] pointed to this 

problem and solved through introducing an end-to-end 

congestion control scheme. 

D. Throughput 

A network throughput refers to the amount of data moved 

successfully from one place to another in a given time period. 

It normally depends on the congestion window or the buffer 

size estimated by the congestion controller at the sender's side 

and the receiving window at the receiver. At TCP, the 

efficiency is the most important factor to tune the parameters, 

and it is noticed that default parameters of   TCP   are 

designed to sacrifice throughput, in exchange for an efficient 

sharing of bandwidth on congested networks [74]. Regarding 

the buffer size, various techniques tried to determine the 

optimal size to achieve the best performance [75]. It is 

reported that in TCP to make the best throughput, the buffer 

size should be dynamically adjusted to the connection and 

server characteristics through dynamic right-sizing [76] and 

buffer size allocation [77]. On the other hand, the UDP 

measured throughput is better than TCP under the same 

conditions. The reason behind this is that UDP does not 

require acknowledgments, but the downside is that sometimes 

small fragments   can be lost [74]. In the modern data paths 

such as QUIC, an advertised connection flow limit is 

specified by 15 MB [29], which is considered large enough to 

avoid flow control bottlenecks. Compared to TCP, for 

example, in video transfer, QUIC increased the number of 

videos that can be played at their optimal rates by 20.9% 

[29]. The highest throughput to be achieved is using the 
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RDMA were offloading the networking stack, and 

eliminating kernel/user context switches resulted in low 

latency and high throughput. In Datacenters, servers would 

achieve the highest throughput using RDMA [46]. In DPDK's 

early stages, the performance was not on the top of the 

pyramid as the bottleneck was the CPU with a limited 

number of cycles per second [58]. However, as the door is 

open to developers to help to improve the performance, many 

new implementations focused on increasing the throughput 

up to 13x times [78]. 

E. Middleboxes 

Middleboxes are network appliances that are capable of 

manipulating, filtering, inspecting, or transforming the traffic, 

which might affect the packet forwarding. The way to deal 

with middleboxes differentiates old and new data paths. TCP 

and UDP are long working protocols even before most of the 

currently available middleboxes. Therefore, middleboxes are 

not affecting the standard TCP, or UDP traffics. TCP, for 

example, remains a trusted backup for new data paths so that 

if their transmission is blocked through a middlebox, the 

transfer is switched to TCP to ensure successful 

communication [29]. QUICK packets were all blocked by 

most middleboxes in the early stages. Later, a vast range of 

middleboxes was identified, and the vendors were reached 

out, and presently QUIC traffic is treated reasonably in most 

middleboxes [29]. In RDMA, the middleboxes are 

overlooked as datacenters usually don't have middleboxes 

[79]. However, DPDK went further and created unique 

versions that are applicable for middleboxes such as 

OpenFunction [69]. 

F. Loss Recovery and Retransmission Ambiguity 

In TCP, the "retransmission ambiguity" problem was raised 

as frequently the receiver could not figure whether the 

received acknowledgment was for an original transmission 

(presumed lost) or for a retransmission. The loss of a 

retransmitted segment in TCP is commonly detected via an 

expensive timeout [29]. However, each QUIC packet carries 

a unique packet number, including those taking retransmitted 

data. Therefore, no further mechanisms are needed to 

distinguish a retransmission from an original transmission, 

thus avoiding TCP's retransmission ambiguity problem. Other 

technologies such as RDMA use lossless link-level flow 

control, namely, credit-based flow control and Priority Flow 

Control, where packets are almost never lost even with 

unreliable transports. However, Hardware failures might lead 

to losing some packets, which are extremely rare [46]. DPDK 

also had its own techniques where the dropout rate was 

studied in detail in terms of packet size, hash tables, and the 

packet buffering memory (membool). It was found the small 

packet sizes, complex hash tables, and extremely small or 

extremely large membools are associated with more dropped 

packets [80]. On the other hand, UDP employs no loss 

recovery techniques. 

G. Developer productivity 

Data paths provide the developers with multiple 

developments or testing tools to safely use the data path. For 

example, in serverless communications, the Lambda model 

[81] can be used by developers to check responses to events 

such as in Remote Procedure Calls (RPC), mostly based on 

TCP connections. On the browsing side, SIP APIs help the 

developers manage, test and analyze the TCP/UDP transport 

resulted from browsing. Similarly, Silverlight and Flash 

player are excellent developer tools, but it is noticed that TCP 

is preferred over UDP therein [82]. However, QUIC testing 

and analysis are provided through the developer tools of the 

Chrome browser, which helps to measure the time elapsed 

since requesting a web page until the page is fully loaded. In 

RDMA and DPDK, it was more flexible where recent RDMA 

frameworks are customizable, and developers can assign 

algorithms and even design the storage structure as in 

Derecho [83]. Similarly, the DPDK frameworks allow the 

developers to write their network protocol stacks and 

implement a set of high-performance datagrams forwarding 

routines in the user space [8]. 

H. Host resource utilization 

In TCP/UDP, a defined memory should be reserved at both 

communication sides, and the used data structure must be 

shared across the different CPU threads/processes, especially 

in multi-core CPU architectures [84]. The same applies to 

ports, where an allocated port for the communication will be 

allocated for the whole conversation. Similarly, the QUIC 

implementation was initially written with a focus on rapid 

feature development and ease of debugging, not the CPU 

efficiency. Even after applying several new mechanisms to 

reduce the CPU cost, QUIC remained more costly than TCP 

[29]. However, RDMA reduces CPU load, as it bypasses the 

kernel and the TCP/IP stack and avoids data copy between 

the user space and the kernel [43]. However, it still needs 

special access to the destination memory. At the DPDK side, 

the bottleneck is the CPU. A CPU can only operate a limited 

number of cycles per second.  The more complex the 

processing of a packet is, the more CPU-cycles are 

consumed, which then cannot be used for other packets. This 

limits the number of packets processed per second.  

Therefore, in order to achieve higher throughput, the goal 

must be to reduce the per-packet CPU-cycles [58]. 

 

V. CONCLUSION 

Improvements to the traditional protocols are possible but not 

urgently required. QUIC, which was built on top of UDP, 

outperformed UDP in many aspects. Compared to TCP, the 

RDMA throughput is higher, the QUIC is faster and better for 

transferring videos in their optimal rate, and DPDK works 

better in Intel architectures. However, the long-term 

supported protocols TCP and UDP are part of many standard 

communications and applications, and probably they will 

persistently play a key role in future data transmissions. This 

work showed it is useful to direct the protocol used to some 

specific areas where they fit the best. RDMA provides in the 

communication of data centers, QUIC would help developers 

in multi-disciplines due to the available routines connecting 

with the application layer, and DPDK would work correctly 

in appliances with Intel architecture. 
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